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Received 31 August 1995

Abstract. Refined measurements are reported on the pressure dependence of the
superconducting transition temperature in the heavy-fermion (HF) superconductor CeCu2Si2.
Two characteristic pressures,p1 ≈ 3 GPa andp2 ≈ 7.6 GPa, delimit three ranges of the
superconducting state. The present study confirms the unique behaviour of CeCu2Si2 in the
series of HF superconductors. This particular behaviour is interpreted as resulting from two
contributions: a smooth one due to the pressure-increased Kondo temperature and sharper
additional features reflecting topological changes in the renormalized heavy bands.

Pressure appears as an experimental parameter of primary interest in the field of heavy-
fermion (HF) physics. Volume reduction changes the strength of hybridization between
conduction and f electrons and this in turn controls the behaviour of heavy-mass
quasiparticles. This effect is reflected by the change of the Kondo temperature,TK , or by that
of the related characteristic electronic temperature,T ∗. Typically a pressurep ≈ 10 GPa can
moveTK from ≈10 K to ≈100 K, i.e. it shifts the system from the HF to the mixed-valence
regime. On the practical side, application of pressure allows one to follow the evolution
of physical properties in one given sample. This is valuable since many aspects of the
HF state appear very sensitive to sample preparation or contamination effects. Pressure
has been repeatedly used in investigations concerning the specific superconductivity [1–7]
which occurs in a few HF compounds with optimal transition temperatures ranging from
Tc ≈ 0.5 K to Tc ≈ 2 K. Presently investigated U-based HF superconductors show aTc

decreasing with applied pressure, a trend opposite to that observed forTK andT ∗ [8–11].
The latter ‘anticorrelation’ has been given a more quantitative basis by considering the
Grüneisen parameters0T ∗ and 0Tc

(0X = d lnX/d lnv, wherev = volume) [12]. Both
have large values in the HF state, similar magnitudes and opposite signs. The behaviour of
CeCu2Si2, the only known example of a Ce-based HF superconductor at ambient pressure
[1], is in stark contrast. For stoichiometric samples of this compound,Tc hardly changes up
to p ≈ 2 GPa [8, 13–15]; in the 2–3 GPa range a rapid increase is observed, followed by
a gentle reduction at higher pressure [13–15]. Some non-superconducting starting samples
can be made superconducting by applying moderate pressures (p ≈ a few 0.1 GPa) [16].
The previous non-monotonic behaviour was obtained with resistance measurements and is
somewhat blurred due to a large broadening of the transition widths occurring at the same
time. This motivated us to re-examine the pressure dependence ofTc in CeCu2Si2 using a
different technique based on the use of a diamond anvil cell (DAC) and a.c. susceptibility.
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The present work is an extension of a preliminary study reported in [17]. The
determination ofTc(p) in CeCu2Si2 has an improved precision which primarily results
from the special attention paid to obtaining hydrostatic conditions. These are of importance
as thermal expansion measurements [18] and specific heat data under uniaxial stress [19]
predict an opposite trend for stresses directed along and perpendicular to the tetragonal axis.
Data are then interpreted as resulting from different contributions, one of which is due to
pressure-induced topological changes in the renormalized band structure of CeCu2Si2. A
calculation is presented for such effects.

For the present study, a polycrystalline sample was prepared by melting appropriate
amounts of the pure elements in an arc furnace. Subsequently, the ingot was annealed
for two days at 700◦C and five days as 1000◦C. The x-ray powder pattern showed only
the reflections characteristic of the proper ThCr2Si2 structure. SEM analysis revealed that
grains having stoichiometric composition and a.c. susceptibility for different parts of the
ingot gave the same superconducting temperatureTc = 690± 15 mK, close to the optimal
value. The assembly of the DAC and the detection coils mounted in a helium-3 refrigerator
has been described elsewhere [20]. Helium is used as a pressure-transmitting medium and
pressure is measured at low temperature with the use of the ruby fluorescence scale. The
pressure gradient or uniaxial stresses appear to be less than 0.05 GPa across the pressure
chamber. After each pressure change, the cell was thermally cycled in order to remove
possible parasitic stresses. Data were obtained for several loadings, on both increasing
and decreasing pressure. The width of the superconducting transition detected by a.c.
susceptibility was less than 0.03 K over all the investigated pressure range.

Figure 1. The change of the superconducting transition temperature of CeCu2Si2 with pressure.
p1 ≈ 3.1 GPa andp2 ≈ 7.6 GPa (vertical dashed lines) delimit three different superconducting
regimes.

Figure 1 shows theTc(p) curve obtained for pressures up top ≈ 9.5 GPa. The initial
increase characteristic of slightly off-stoichiometric samples is absent from the present data
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which confirm the non-monotonic behaviour previously observed.Tc reaches its maximum
value atT max

c ≈ 2.3 K for p1 ≈ 3.1 GPa. Moreover, several additional features are also
revealed: (i) the upward change atp1 has a cusp like form; (ii) a second downward cusp
is observed atp2 ≈ 7.6 GPa; (iii) betweenp1 andp2, Tc falls in an approximately linear
function withTc(p) = 2.806 K at 0.168p; (iv) abovep2, after a cross-over region, a second
linear range is observed withTc = 2.790 K at 0.192p. The changes at the two cusps are
perfectly reversible as established by increasing and decreasing pressure throughp1 andp2,
respectively.p1 andp2 thus define three different superconducting states of CeCu2Si2: (I)
for p < p1, (II) for p1 < p < p2, (III) for p > p2.

The linear regimes in ranges (II) and (III) are reminiscent of the linear decrease of
Tc(p) observed in U-based HF superconductors. In the case of UPt3 and UBe13 [8, 11] the
agreement is even approximately quantitative for dTc/dp. As quoted above, quantitative
considerations are rather expressed in terms of Grüneisen parameters. Writing:

Tc ≈ 2eff exp
(−1/λeff

)
(1)

where2eff ∝ TK andλeff ∝ N(εF ) ∝ 1/TK due to the narrow f-band character of the HF
superconductivity, one gets:

0Tc
/0T ∗ ≈ 1 + ln

(
Tc/2eff

)
. (2)

Therefore, anticorrelation holds forTc ≈ 0.1 2eff , an order of magnitude which appears
to be met in samples with optimalTc. In CeCu2Si2 at room pressure,0Tc

≈ +4 (using
the bulk modulus,B ≈ 110 GPa [21]), while0T ∗ ≈ 70–80 [14, 18]. The only way to
estimate0T ∗ in regime (II) is by using resistivity measurements [13, 16], though this way
is known to be rather uncertain for precise determination [12, 18]. Just abovep1, the shift
of the temperature of the maximum resistivity,Tmax, provides0Tmax ≈ 20, while the change
of A, the ρ versusT 2 law coefficient, gives0A ∝ 20T ∗ ≈ 55 [13]. At the same pressure
0Tc

≈ −8. Though the absolute values for the above electronic Grüneisen parameters are
several times lower than for U-based HF superconductors, the anticorrelation between0T ∗

and0Tc
abovep1 is satisfactory, and reinforces the similarity between regime (II) and the

latter case. It is thus natural to conclude that regime (II) reflects the mean evolution ofTc

expected for narrow-band superconductivity. Now we have to explain the unique features
of Tc(p) in CeCu2Si2 as compared to other HF superconductors. Equation (1) also predicts
that Tc may go through a maximum as a result of the increasing trend ofTK(p). However,
the process is smooth and it is not possible to justify the cusps observed atp1 and p2 in
this way. Another possibility forTc(p) results from a lowTc value atp = 0 due to a
low coherence temperature. The latter temperature increases withp and consequentlyTc

increases . This mechanism is again confronted with the difficulties related to the presence
of sudden changes atp1 andp2.

Electronic density of states (DOS) considerations provide an alternative approach to
explaining why the observedTc(0) is four times smaller than the value extrapolated from
the linear regime (II). From equation (1) and again assumingTc ≈ 0.1 2eff , one finds
that a reduction of the DOS by 40% is sufficient for a drop inTc by a factor of four.
Such a reduction can result from a static charge or spin-density wave. This hypothesis was
recently proposed in order to explain the fact that the superconducting phase is embedded
in a more general (H, T ) phase diagram (for a review see [22]). However, this phase
diagram seems to be related to non-static fluctuations as recently evidenced by NMR [23].
Consequently, such an origin for a reduced DOS appears uncertain until more direct evidence
is obtained. Very recently, a semi-quantitative explanation for the (H, T ) phase diagram has
been obtained on the basis of topological changes occurring in the calculated renormalized
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electronic band structure [24]. We shall now examine how similar effects can modifyTc(p).
Pressure-induced topological changes give rise to the so-called ‘21/2-order transition’ which
may affect several quantities, as shown by Lifschitz [25]. Because the gap equation [26]
has an integral form with a kernel defined in the vicinity of the Fermi level (εF ), it will
be significantly modified when a Van-Hove singularity lies close enough toεF . Such a
mechanism has been invoked in the past to explain the pressure dependence ofTc in some
elemental superconductors [27, 28]. In this case however, the ‘anomalous’ changes inTc

were limited to variations of a few per cent. Following the same spirit, the limiting form
of the gap equation which definesTc now reads:

g

∫
1

ξ
tanh

(
ξ

2Tc

)
d3p

(2πh̄)3
= 1 (3)

whereg is a coupling constant,ξ = ε − µ and µ is the chemical potential. Assuming a
non-degenerate singularity at some critical point ‘C’ which belongs to the critical surface of
constant energyε ≡ εc and has a quasimomentumpc one can expand the energy spectrum
of carriers as:ε = εc + p∗2

1 /2m1 + p∗2
2 /2m2 + p∗2

2 /2m3 in which p∗
i = pi − pci . Each

effective mass can be either positive or negative. Equation (3) can be separated into one
integration performed in the vicinity of C which gives a singular contributionIsing(µ, Tc),
and one performed over the remaining part which gives a regular contribution,Ireg(µ, Tc).
In shorthand notation, equation (3) reads:A ≡ gIreg(µ, Tc) + gIsing(µ, Tc0 = 1. We now
defineT

reg
c as a solution of:B ≡ gIreg(µ, T

reg
c ) = 1. SubtractingA from B and after the

standard transformation ofIreg(µ, T
reg
c ) − Ireg(µ, Tc), one gets:

v(µ)

2
ln

(
T

reg
c

Tc

)
= −Ising

(
µ, Tc

)
(4)

v(µ) being a mean DOS at the Fermi level. Introducing the reduced momentum
qi = p∗

i |mi |−1/2, the integral is carried out using spherical or hyperbolic coordinates
(qz = q cosh9, qx = q sinh 9 cos8, qy = q sinh 9 sin 8) depending on whether
the effective masses have the same or different signs, respectively. One arrives at the same
one-dimensional integral in both cases except for the sign which is ‘plus’ in the first case
and ‘minus’ in the second:

Ising = ±
√|m1m2m3|Tc

π2h̄3

∫ �/2Tc

η

√
x − η

tanhx

x
dx. (5)

Here x = ±ξ/2Tc, η = ±(εc − µ)/2Tc and � is a cut-off parameter dependent on the
choice made for the integration domain about C. The signs in the definitions ofξ andη are
the same as those appearing in theq dependence ofξ in this domain:ξ = εc − µ ± q2/2.
According to equation (5),Ising(µ, Tc) is positive when a topological transition results in
the creation of a new pocket on the Fermi surface (FS) (see also [28]). The DOS acquires
a singular increment which produces an increase ofTc. In the case of CeCu2Si2, a natural
choice forT reg

c should be close to the linear behaviour of range (II) and a negative singular
contribution, Ising < 0, is expected. The corresponding change of topology in the FS
can consist of the disruption of a neck. On the other hand, the ambiguity introduced by
separatingI into Ireg and Ising can be removed by considering the derivative dIsing/dη.
Thus, for a more convenient comparison with experimental data one better considers the
pressure derivative of equation (4). To leading order on (εc − µ), one has:

d

dp
ln

(
T

reg
c

Tc

)
∼= d(εc − µ)

dp

√|m1m2m3|
2π2h̄3v(µ)

√
Tc

J (η)

J (η) =
∫ ∞

η

tanhx

x
√

x − η
dx.

(6)
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A strong dependence ofTc on pressure comes mainly from the integralJ (η). According
to its definition,J (η) is a continuous function ofη with J ∼ 1 for η ∼ 1. In particular
J (0) = 2

∫ ∞
0 x−1/2 cosh−2 x dx = 2 × 1.905 56. At both infinities,J tends towards zero

but, as a result of the asymmetry linked to the topological transition, the asymptotes are
different: J (η) ≈ 2π/η for large positive values ofη andJ (η) ≈ 2 ln(16γ |η|/π)/|η|1/2 for
large negativeη (γ is the Euler constant). Recalling the definition ofη, one can see that the
asymptotic form ofJ (η) is more singular on the side of the transition which corresponds
to the larger number of recesses of the FS, in accordance with a general rule [25].

The preceding analysis was based upon a quadratic dispersion law, for which case the
singular part of the DOS,vsing(µ), is proportional to|ε − µ|1/2. It may happen, especially
in the case of an f band with small dispersion, that on a wider range of momentumvsing(µ)

can be better approximated by a more general law, i.e.|µ − εc|1−α. For example, if the
energy difference(ε−εc) expansion starts from(p∗

1)
4 in one of the principal directions, one

would then haveα = 3/4. In order to take this generalization into account, we substitute
the integral

Kα(η) =
∫ ∞

η

tanhx

x(x − η)α
dx (7)

for J (η), with 1/2 6 α < 2. SoJ (η) = K1/2(η).
A direct numerical evaluation proves that these integrals are poorly convergent for large

values ofη. It then proves more convenient to use the representation of this function in the
form of the infinite sum:

Kα(η) = Kα(0) + 4

sinπα

(
2

π

)α ∞∑
n=0

1

(2n + 1)1+α

(=(i + vn)
α

(1 + v2
n)

α
− sin

πα

2

)
(8)

wherevn = (2η/π)/(2n + 1). As α is increased and approaches one, the asymmetry looks
less and less pronounced.

Figure 2 shows the logarithmic derivative of the ratioT
reg
c /Tc. A negative minimum

occurs atpinf l ≈ 2.8 GPa, and data are distributed in an asymmetric way about this value.
The existence of an inflexion point, as well as its position, can be questioned, mainly
because of the uncertainty remaining in the choice ofT

reg
c . The error bars in figure 2

estimate this uncertainty together with the error resulting from the derivative procedure. In
addition, one also has to consider that the overall curve can be shifted, again as a result of
the uncertainty of the chosenT reg

c . This is evaluated through the double-arrow segment in
figure 2 by comparing the extrapolated linear regime of (II) with an extreme hypothesis of
pressure-independentT

reg
c . Under such limits, the fitting procedure based on equation (6)

can be carried out and consists of a linear transformation of theX andY scales. The result
is shown by the continuous line in figure 2. The corresponding mapping betweenη and
p is: η = 9(2.9 − p), with p expressed in GPa. Following Lifschitz [25], we can write
η = η0(pc − p)/pc. This gives the critical pressure aspc ≈ 2.9 GPa, located between
pinf l andp1, andη0 = (εc − µ(0))/2Tc ≈ 26. Retaining the mean value of 1.5 K forTc,
we obtainεc − µ(0) ≈ 80 K for the distance of the critical energy from the Fermi level
at zero pressure. A slightly improved fit to the data of figure 2 can be obtained in the
lower-pressure range using equation (6) withα = 3/4, but it deteriorates in the vicinity of
pinf l . However, the characteristic energy scale deduced from this second fit is essentially the
same as forα = 1/2. This value of≈80 K is significantly larger thanTK(p = 0) ≈ 10 K
which scales with the width of the narrow quasiparticle band. It is also much larger than
the energies associated with the characteristic magnetic fields,H ≈ 4–6 T, involved in the
(H, T ) diagram for the so-called ‘A-phase’ transition [22], for which a mechanism based on
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Figure 2. The logarithmic derivative of the ratioT reg
c /Tc versus pressure belowp1. Error

bars mainly reflect uncertainty in determining the derivative. The continuous line represents the
prediction for a square-root cusp in the electronic DOS (α = 1/2). The double arrow estimates
the uncertainty in the position of the whole curve resulting from the choice ofT

reg
c (p).

field-induced topological change of the heavy quasi-particle bands has been proposed [24].
The order of magnitude ofεc − µ(0) rather suggests a mechanism involving crystal-field
split sub-bands each having a width of approximatelyTK . As the pressure is increased
the sub-bands broaden and interfere, producing a topological change. In this context, it is
interesting to recall that stoichiometric samples present two maxima in their temperature-
dependent resistivity in range (I), one broad maximum in range (II) and a narrower one in
range (III) [13, 16, 29]. On the other hand, the sharpness of the observed cusp indicates that
the changes in the DOS are sharp as well. Bands should thus be rather well formed rather
than smeared out due to a low coherence temperature. Of course, the crystal-field scheme
can only give an approximate view of the problem and band calculations under reduced
volume could certainly help in validating and refining the above scenario. Attempts to fit
the drop abovep2 appear quantitatively more hazardous than in the case ofp1. This is due
to the smaller jump amplitude occurring in a narrow pressure range and present data are
still insufficient for checking the topological scheme nearp2.

In conclusion, the present re-examination of the evolution ofTc with pressure in
CeCu2Si2 confirms the existence of two cusp like singularities atp1 and p2. Above p1

andp2, the observed linear decreases are presumably due to the generalTK(p)-controlled
trend, characteristic of a narrow f-band superconductor. The rapid change ofTc below p1

is qualitatively consistent with pressure-induced topological changes occurring in a well
established band structure. Quantitatively, however the present analysis suggest larger
energy scales than those involved in the magnetic-field-induced topological change.

We wish to thank B L̈uthi, F Steglich and G Zwicknagel for stimulating discussions and
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